Оглавление
Решето Эратосфена
При составлении таблицы простых чисел следует учитывать то, что для такой задачи необходима последовательная проверка чисел, начиная с 2 до 100. При отсутствии делителя оно фиксируется в таблицу, если оно составное, то в таблицу не заносится.
Рассмотрим пошагово.
Если начать с числа 2, то оно имеет только 2 делителя: 2 и 1, значит, его можно занести в таблицу. Также и с числом 3. Число 4 является составным, следует разложить его еще на 2 и 2. Число 5 является простым, значит, можно зафиксировать в таблице. Так выполнять вплоть до числа 100.
Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.
Способ при помощи решета Эратосфена считают самым удобным. Рассмотрим на примере таблиц, приведенных ниже. Для начала записываются числа 2, 3, 4, …, 50.
Теперь необходимо зачеркнуть все числа, которые кратны 2. Произвести последовательное зачеркивание. Получим таблицу вида:
Далее вычеркиваем все числа, кратные 3. Получаем таблицу вида:
Переходим к вычеркиванию чисел, кратных 5. Получим:
Вычеркиваем числа, кратные 7, 11. В конечном итоге таблица получает вид
Перейдем к формулировке теоремы.
Теорема 3
Наименьший положительный и отличный от 1 делитель основного числа а не превосходит a, где a является арифметическим корнем заданного числа.
Доказательство 3
Необходимо обозначить b наименьший делитель составного числа а. Существует такое целое число q, где a=b·q, причем имеем, что b≤q. Недопустимо неравенство вида b>q, так как происходит нарушение условия. Обе части неравенства b≤q следует умножить на любое положительное число b, не равное 1. Получаем, что b·b≤b·q, где b2≤a и b≤a.
Из доказанной теоремы видно, что вычеркивание чисел в таблице приводит к тому, что необходимо начинать с числа , которое равняется b2 и удовлетворяет неравенству b2≤a. То есть, если вычеркнуть числа, кратные 2, то процесс начинается с 4, а кратных 3 – с 9 и так далее до 100.
Составление такой таблицы при помощи теоремы Эратосфена говорит о том, что при вычеркивании всех составных чисел, останутся простые, которые не превосходят n. В примере, где n=50, у нас имеется, что n=50. Отсюда и получаем, что решето Эратосфена отсеивает все составные числа, которые по значению не больше значения корня из 50. Поиск чисел производится при помощи вычеркивания.
Натуральный ряд.
Натуральные числа, записанные подряд в порядке возрастания, образуют натуральный ряд или ряд натуральных чисел.
Свойства натурального ряда:
- Наименьшее натуральное число – единица.
- У натурального ряда следующее число больше предыдущего на единицу. (1, 2, 3, …) Три точки или троеточие ставятся в том случае, если закончить последовательность чисел невозможно.
- Натуральный ряд не имеет наибольшего числа, он бесконечен.
Пример №1:Напишите первых 5 натуральных числа.Решение:Натуральные числа начинаются с единицы.1, 2, 3, 4, 5
Пример №2:Нуль является натуральным числом?Ответ: нет.
Пример №3:Какое первое число в натуральном ряду?Ответ: натуральный ряд начинается с единицы.
Пример №4:Какое последнее число в натуральном ряде? Назовите самое большое натуральное число?Ответ: Натуральный ряд начинается с единицы. Каждое следующее число больше предыдущего на единицу, поэтому последнего числа не существует. Самого большого числа нет.
Пример №5:У единицы в натуральном ряду есть предыдущее число?Ответ: нет, потому что единица является первым числом в натуральном ряду.
Пример №6:Назовите следующее число в натуральном ряду за числами: а)5, б)67, в)9998.Ответ: а)6, б)68, в)9999.
Пример №7:Сколько чисел находится в натуральном ряду между числами: а)1 и 5, б)14 и 19.Решение:а) 1, 2, 3, 4, 5 – три числа находятся между числами 1 и 5.б) 14, 15, 16, 17, 18, 19 – четыре числа находятся между числами 14 и 19.
Пример №8:Назовите предыдущее число за числом 11.Ответ: 10.
Пример №9:Какие числа применяются при счете предметов?Ответ: натуральные числа.
Определение целых чисел
Что такое целое число — это натуральное число, а также противоположное ему число и нуль. Примеры целых чисел: -7, 222, 0, 569321, -12345 и др.
Что важно знать о целых числах:
- Сумма, разность и произведение целых чисел в результате дают целые числа.
- Не существует самого большого и самого маленького целого числа. Этот ряд бесконечен. Наибольшего и наименьшего целых чисел — не бывает.
- Обыкновенные и десятичные дроби нельзя назвать целыми числами. Но иногда в задачах можно встретить целые числа, у которых дробная часть равна нулю и при этом нет долей.
Целые числа на числовой оси выглядят так:
На координатной прямой начало отсчета всегда начинается с точки 0. Слева находятся все отрицательные целые числа, справа — положительные. Каждой точке соответствует единственное целое число.
В любую точку прямой, координатой которой является целое число, можно попасть, если отложить от начала координат данное количество единичных отрезков.
Натуральные числа — это целые, положительные числа, которые мы используем для подсчета. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 + ∞.
Целые числа — это расширенное множество натуральных чисел, которое можно получить, если добавить к ним нуль и отрицательные числа. Множество целых чисел обозначают Z.
Выглядит эти ребята вот так:
Последовательность целых чисел можно записать так:
∞ + … -4, -3, -2, -1, 0, 1, 2, 3, 4 … + ∞
Простые и составные числа – определения и примеры
Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.
Определение 1
Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1.
Определение 2
Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.
Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.
Определение 3
Простые числа – это натуральные числа, имеющие только два положительных делителя.
Определение 4
Составное число – это натуральное число, имеющее более двух положительных делителей.
Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а, то есть оно будет делиться само на себя и на 1. Дадим определение целых чисел.
Определение 5
Натуральные числа, которые не являются простыми, называют составными.
Простые числа: 2, 3, 11, 17, 131, 523. Они делятся только сами на себя и на 1. Составные числа: 6, 63, 121, 6697. То есть число 6 можно разложить на 2 и 3, а 63 на 1, 3, 7,9, 21, 63, а 121 на 11, 11, то есть его делители будут 1, 11, 121. Число 6697 разложится на 37 и 181. Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.
Разряды чисел
От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:
1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу.
Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.
Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.
У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.
Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.
Низший (младший) разряд многозначного натурального числа — разряд единиц.
Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.
Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще чтобы визуально разделить классы чисел.
Разрядные единицы обозначают так:
- Единицы — единицами первого разряда (или простыми единицами) и пишут на первом месте справа.
- Десятки — единицами второго разряда и записывают в числе на втором месте справа.
- Сотни — единицами третьего разряда и записывают на третьем месте справа.
- Единицы тысяч — единицами четвертого разряда и записывают на четвертом месте справа.
- Десятки тысяч — единицами пятого разряда и записывают на пятом месте справа.
- Сотни тысяч — единицами шестого разряда и записывают в числе на шестом месте справа и так далее.
Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.
Чтобы легче понимать математику — записывайтесь на наши онлайн-курсы по математике! |
Сравнение систем
Таблица от значения к названию
Порядок | Значение | Название | СИ | |||
---|---|---|---|---|---|---|
Американскаясистема | Логикапостроения | Европейскаясистема | Логикапостроения | |||
10 | один | один | ||||
1 | 103 | тысяча | 1 0001 + 0 | тысяча | 1 000 0000,5 | кило |
2 | 106 | миллион | 1 0001 + 1 | миллион | 1 000 0001,0 | мега |
3 | 109 | биллион | 1 0001 + 2 | тысяча миллионов(миллиард) | 1 000 0001,5 | гига |
4 | 1012 | триллион | 1 0001 + 3 | биллион | 1 000 0002,0 | тера |
5 | 1015 | квадриллион | 1 0001 + 4 | тысяча биллионов(биллиард) | 1 000 0002,5 | пета |
6 | 1018 | квинтиллион | 1 0001 + 5 | триллион | 1 000 0003,0 | экса |
7 | 1021 | секстиллион | 1 0001 + 6 | тысяча триллионов(триллиард) | 1 000 0003,5 | зетта |
8 | 1024 | септиллион | 1 0001 + 7 | квадриллион | 1 000 0004,0 | йотта |
Классы чисел
Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса:
Названия классов многозначных чисел справа налево:
- первый — класс единиц,
- второй — класс тысяч,
- третий — класс миллионов,
- четвёртый — класс миллиардов,
- пятый — класс триллионов,
- шестой — класс квадриллионов,
- седьмой — класс квинтиллионов,
- восьмой — класс секстиллионов.
Для удобства чтения записи многозначного числа, между классами оставляется небольшой пробел. Например, чтобы прочитать число 148951784296, выделим в нём классы:
148 951 784 296
и прочитаем число единиц каждого класса слева направо:
148 миллиардов 951 миллион 784 тысячи 296.
При чтении класса единиц в конце обычно не добавляют слово единиц
.
Использование названий больших чисел
Некоторые имена с большими числами, такие как миллион , миллиард и триллион , имеют реальные ссылки в человеческом опыте и встречаются во многих контекстах. Иногда названия больших чисел были вынуждены широко использоваться в результате гиперинфляции . Банкнота с наивысшей числовой стоимостью, когда-либо напечатанная, была купюрой в 1 секстиллион пенго (10 21 или 1 миллиард билпенго в печатном виде), напечатанной в Венгрии в 1946 году. В 2009 году Зимбабве напечатала зимбабвийскую купюру в 100 триллионов (10 14 ) долларов , которая в то время печати стоило около 30 долларов США.
Однако имена больших чисел имеют незначительное, искусственное существование, редко встречаются вне определений, списков и обсуждений способов именования больших чисел. Даже хорошо зарекомендовавшие себя названия, такие как секстиллион , используются редко, поскольку в контексте науки, включая астрономию, где часто встречаются такие большие числа, они почти всегда записываются с использованием научных обозначений . В этих обозначениях степени десяти выражаются как 10 с числовым надстрочным индексом, например: «Рентгеновское излучение радиогалактики равно1,3 × 10 45 джоулей » . Когда такое число, как 10 45, нужно передать словами, оно просто читается как« от десяти до сорок пятого ». Это легче сказать и менее двусмысленно, чем« quattuordecillion », что означает нечто иное в длинном и коротком масштабе.
Когда число представляет собой количество, а не количество, можно использовать префиксы SI — таким образом, «фемтосекунду», а не «одну квадриллионную долю секунды» — хотя часто вместо некоторых очень высоких и очень низких префиксов используются степени десяти. В некоторых случаях используются специализированные единицы, такие как парсек астронома и световой год или сарай физика элементарных частиц .
Тем не менее, большие числа обладают интеллектуальным увлечением и представляют математический интерес, и присвоение им имен — один из способов, с помощью которых люди пытаются осмыслить и понять их.
Одним из самых ранних примеров этого является «Счетчик песка» , в котором Архимед дал систему именования больших чисел. Для этого он называл числа до бесчисленного множества (10 8 ) «первыми числами» и называл 10 8 «единицей вторых чисел». Кратные этой единицы затем стали вторыми числами, до этой единицы взято мириады раз, 10 8 · 10 8 = 10 16 . Это стало «единицей третьих чисел», кратными третьим числам и так далее. Архимед продолжал называть числа таким образом до бесчисленного множества раз больше единицы из 10 8-го числа, то есть и встроил эту конструкцию в другую копию самого себя, чтобы получить имена для чисел вплоть до Архимеда, а затем оценил количество песчинок, которые потребовалось, чтобы заполнить известную вселенную, и обнаружил, что это не более «тысячи мириад восьмых чисел» (10 63 ).
(108)(108)знак равно108⋅108,{\ displaystyle (10 ^ {8}) ^ {(10 ^ {8})} = 10 ^ {8 \ cdot 10 ^ {8}},}((108)(108))(108)знак равно108⋅1016.{\ displaystyle ((10 ^ {8}) ^ {(10 ^ {8})}) ^ {(10 ^ {8})} = 10 ^ {8 \ cdot 10 ^ {16}}.}
С тех пор многие другие занимались концептуализацией и именованием чисел, которые на самом деле не существуют вне воображения. Одна из причин для такого поиска — это то, что приписывают изобретателю слова гугол , который был уверен, что любое конечное число «должно иметь имя». Другая возможная мотивация — это соревнование между студентами курсов компьютерного программирования, где обычным упражнением является написание программы для вывода чисел в форме английских слов.
Большинство названий, предлагаемых для больших чисел, относятся к систематическим схемам, которые можно расширять. Таким образом, многие имена для больших чисел являются просто результатом следования системе именования до ее логического завершения или дальнейшего ее расширения.
Решение
Зона стола может быть разделена на центральную прямоугольную зону и два полукруга, по одному с каждой стороны, которые вместе составляют один полный круг.
Мы будем называть A1 к площади прямоугольника, задаваемой:
К1 = основание × высота = 2,5 м x 1,0 м = 2,5 м2
Со своей стороны, площадь круга, равная площади 1 полукруга, умноженной на 2, равна:
К2 = π × радиус2
Диаметр любого из полукругов составляет 1,0 м, поэтому радиус равен 0,50 м. Диаметр также можно использовать напрямую для расчета площади, в этом случае:
К2 = (π × диаметр2) / 4
В любом слючае:
К2 = / 4 = 0,785398163 м2
Были использованы все цифры, предоставленные калькулятором. Теперь добавляем A1 уже2 для общей площади стола A:
A = (2,5 + 0,785398163) м2 = 3,285398163 м2
Поскольку размеры таблицы известны до двух значащих цифр, не имеет смысла выражать результат со всеми десятичными знаками, указанными калькулятором, который никогда не дает количество значащих цифр в результате.
Что вам нужно сделать, так это округлить область так, чтобы в ней было такое же количество значащих цифр, что и размеры таблицы, то есть 2. Таким образом, окончательный результат будет представлен следующим образом:
A = 3,3 м2
Поиск простых чисел. Тесты простоты
Множество ученых разных времен пытались найти какие-то принципы (системы) для нахождения списка простых чисел. Науке известны системы, которые называются решето Аткина, решето Сундартама, решето Эратосфена. Однако они не дают каких-то существенных результатов, и для нахождения простых чисел используется простая проверка. Также математиками были созданы алгоритмы. Их принято называть тестами простоты. Например, существует тест, разработанный Рабином и Миллером. Его используют криптографы. Также существует тест Каяла-Агравала- Саскены. Однако он, несмотря на достаточную точность, очень сложен в вычислении, что принижает его прикладное значение.
Американская система
В американской или короткой системе все названия больших чисел строятся так: в начале идет латинское порядковое числительное, а в конце к нему добавляется суффикс «-иллион». Исключение составляет название «миллион», которое является названием числа тысяча (лат. mille) и увеличительного суффикса «-иллион». Так получаются числа — биллион, триллион, квадриллион, квинтиллион, секстиллион и т. д. Американская система используется в США, Канаде, Великобритании, Греции и Турции. Количество нулей в числе, записанном по американской системе, определяется по формуле 3·x+3 (где x — латинское числительное).
В некоторых странах, в том числе и в России, вместо слова «биллион» используется слово «миллиард».
∞. Бесконечность
Это число известно всем и каждому, оно часто используется для преувеличений — как какой-нибудь «многоллион». Однако это число намного сложнее, чем большинство может представить, и если вы могли представить числа, идущие до этого пункта, именно это число очень странное и противоречивое. Согласно правилам бесконечности, есть бесконечное число нечетных и четных чисел в бесконечности, однако только половина от всех чисел может быть четной. Бесконечность плюс один равна бесконечности, бесконечность минус один равна бесконечности, бесконечность плюс бесконечность равна бесконечности, деленная пополам — тоже бесконечность, бесконечность минус бесконечность — никто не знает, бесконечность, деленная на бесконечность, будет, скорее всего, 1.
Ученые полагают, что в известной вселенной около 10^80 субатомных частиц, но это только известная вселенная. Некоторые предполагают, что вселенная бесконечна. Если это так, то математически достоверно, что есть другая Земля где-то там, где каждый атом складывается таким же образом, как и мы, и наша Земля. Шанс того, что копия Земли существует, невероятно мал, но в бесконечной вселенной это не только может произойти, но и бесконечно много раз.
В бесконечность верят не все. Израильский профессор математики Дорон Зильбергер утверждает, что по его мнению, числа не будут продолжаться вечно, и найдется настолько большое число, что когда вы добавите к нему единицу, вы придете к нулю
И хотя это число едва ли когда будет обнаружено и едва ли кто сможет его вообразить, бесконечность является важной частью математической философии
Длинная шкала [ править | править код ]
Названия чисел в этой системе строятся так: к латинскому числительному , обозначающему степень миллиона, добавляют суффикс «-он», название следующего числа (в 1000 раз большего) образуется из того же самого латинского числительного, но с суффиксом «-ард». То есть после триллиона в этой системе идёт триллиард, а только затем квадриллион, за которым следует квадриллиард и т. д. Количество нулей в числе, записанном по этой системе и оканчивающегося суффиксом «-иллион», определяется по формуле 6·x (где x — латинское числительное) и по формуле 6·x+3 для чисел, оканчивающихся на «-иллиард».
В настоящее время применяется в большинстве франкоязычных, скандинавских, испаноязычных и португалоязычных стран, кроме Бразилии.
Разряды и классы натурального числа
Рассмотрим натуральное число
Название класса | Миллиарды | Миллионы | Тысячи | Единицы | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Название разряда | Сотни миллиардов | Десятки миллиардов | Миллиарды | Сотни миллионов | Десятки миллионов | Миллионы | Сотни тысяч | Десятки тысяч | Тысячи | Сотни | Десятки | Единицы |
Цифра (символ) | 7 |
Название класса | Миллиарды | Миллионы | Тысячи | Единицы | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Название разряда | Сотни миллиардов | Десятки миллиардов | Миллиарды | Сотни миллионов | Десятки миллионов | Миллионы | Сотни тысяч | Десятки тысяч | Тысячи | Сотни | Десятки | Единицы |
Цифра (символ) | 7 | 8 | 1 | 9 | 7 |
C помощью таблицы разрядов прочитаем это число. Для этого надо слева направо по очереди называть количество единиц каждого класса и добавлять название класса.
Название класса единиц не произносят, также не произносят название класса, если все три цифры в его разрядах — нули.
Теперь прочтем число из таблицы: миллиарда миллиона тысяч .
Запомните!
Любое натуральное число можно записать в виде разрядных слагаемых.
Числа … называются разрядными единицами. С их помощью натуральное число записывается в виде разрядных слагаемых. Так, например, число будет выглядеть в виде разрядных слагаемых.
Проверить свои вычисления вы можете с помощью нашего калькулятора разложения числа на разряды онлайн.
Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.
- миллиардов = триллион («три» — по латыни «три»)
- триллионов = квадриллион («квадра» — по латыни «четыре»)
- квадриллионов = квинтиллион («квинта» — по латыни «пять»)
Все числа пересчитать невозможно, поскольку за каждым числом следует число на единицу большее, но очень большие числа в повседневной жизни не нужны.
Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.
Это число получило специальное название — гугол. Гугол — число, у которого нулей.
Миллиард = биллион?
Такое слово, как биллион, применяется для обозначения миллиарда только в тех государствах, в которых за основу принята «короткая шкала». Это такие страны, как Российская Федерация, Соединенное Королевство Великобритании и Северной Ирландии, США, Канада, Греция и Турция. В других странах понятие биллион означает число 10 12 , то есть один и 12 нулей. В странах с «короткой шкалой», в том числе в России, эта цифра соответствует 1 триллиону.
Такая неразбериха появилась во Франции в то время, когда происходило становление такой науки, как алгебра. Изначально у миллиарда было 12 нулей. Однако все изменилось после появления основного пособия по арифметике (автор Траншан) в 1558 году), где миллиард — это уже число с 9 нулями (тысяча миллионов).
Несколько последующих столетий эти два понятия употреблялись наравне друг с другом. В середине 20 века, а именно в 1948 году, Франция перешла на длинную шкалу системы числовых наименований. В связи с этим, короткая шкала, некогда позаимствованная у французов, все же отличается от той, которой они пользуются сегодня.
Исторически сложилось так, что Соединенное Королевство использовало долгосрочный миллиард, но с 1974 года официальная статистика Великобритании использовала краткосрочную шкалу. С 1950-х годов краткосрочная шкала все чаще использовалась в области технической письменности и журналистики, несмотря на то, что по-прежнему сохранялась долгосрочная шкала.
Бесчисленное множество различных чисел окружает нас каждый день. Наверняка многие люди хотя бы раз интересовались, какое число считается самым большим. Ребенку можно просто сказать, что это – миллион, но взрослые прекрасно понимают, что за миллионом следуют и другие числа. Например, стоит только каждый раз прибавлять к числу единичку, и оно будет становиться все больше – так происходит до бесконечности. Но если разобрать числа, имеющие названия, то можно узнать, как называется самое большое число в мире.
Однозначные, двузначные и трехзначные натуральные числа
Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.
Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.
По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.
Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.
Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.
Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.
Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.
Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.
Решето Эратосфена
При составлении таблицы простых чисел следует учитывать то, что для такой задачи необходима последовательная проверка чисел, начиная с 2 до 100 . При отсутствии делителя оно фиксируется в таблицу, если оно составное, то в таблицу не заносится.
Если начать с числа 2 , то оно имеет только 2 делителя: 2 и 1, значит, его можно занести в таблицу. Также и с числом 3 . Число 4 является составным, следует разложить его еще на 2 и 2 . Число 5 является простым, значит, можно зафиксировать в таблице. Так выполнять вплоть до числа 100 .
Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.
Способ при помощи решета Эратосфена считают самым удобным. Рассмотрим на примере таблиц, приведенных ниже. Для начала записываются числа 2 , 3 , 4 , … , 50 .
Теперь необходимо зачеркнуть все числа, которые кратны 2 . Произвести последовательное зачеркивание. Получим таблицу вида:
Далее вычеркиваем все числа, кратные 3 . Получаем таблицу вида:
Переходим к вычеркиванию чисел, кратных 5 . Получим:
Вычеркиваем числа, кратные 7 , 11 . В конечном итоге таблица получает вид
Перейдем к формулировке теоремы.
Наименьший положительный и отличный от 1 делитель основного числа а не превосходит a , где a является арифметическим корнем заданного числа.
Необходимо обозначить b наименьший делитель составного числа а . Существует такое целое число q , где a = b · q , причем имеем, что b ≤ q . Недопустимо неравенство вида b > q , так как происходит нарушение условия. Обе части неравенства b ≤ q следует умножить на любое положительное число b , не равное 1 . Получаем, что b · b ≤ b · q , где b 2 ≤ a и b ≤ a .
Из доказанной теоремы видно, что вычеркивание чисел в таблице приводит к тому, что необходимо начинать с числа , которое равняется b 2 и удовлетворяет неравенству b 2 ≤ a . То есть, если вычеркнуть числа, кратные 2 , то процесс начинается с 4 , а кратных 3 – с 9 и так далее до 100 .
Составление такой таблицы при помощи теоремы Эратосфена говорит о том, что при вычеркивании всех составных чисел, останутся простые, которые не превосходят n . В примере, где n = 50 , у нас имеется, что n = 50 . Отсюда и получаем, что решето Эратосфена отсеивает все составные числа, которые по значению не больше значения корня из 50 . Поиск чисел производится при помощи вычеркивания.
История цифры 0
Например, в вавилоняне не зная о нуле (цифре), вполне отличали числа 202 от 22. У них хоть и существовала шестидесятиричная система счисления, а не десятичная как у нас, интуитивно они понимали что значит ноль. В пустующую ячейку записывались либо три «крючка» либо два клинышка, обозначавшие пустоту. Это делали еще около 300 года до нашей эры.
Древние греки понятия о нуле не имели. Дело в том, что греки оперировали числами в основном в прикладных целях геометрии. А длинна отрезка равная нулю не имеет практической ценности. В астрономических счислениях применялась буква «омикрон» (όμικρον). Это первая буква в слове «ouden» означающем ничто и записывающейся как О (кружочек) и означающая…. Нет, не ноль, а 70! Греки пользовались алфавитной системой записи чисел.
Римляне тоже о нуле не знали. Если записать число 388 римскими цифрами получится CCCLXXXVIII. Никакого понятия о разрядах. Как записать 0 римскими цифрами? Ответ — никак.
Как же появилась цифра 0? И в древней Греции и Египте для счета использовались камешки. Когда камешек поднимается с того места на котором лежал при счете, от него остается ямка. Не ноль ли это? Нет, пока еще не ноль. Все что было до индийцев носило только прикладной характер и никак не может быть принято за настоящую историю изобретения ноля. Это всего лишь обозначение пустого места. А ноль — это цифра и число.
Система десятичных разрядов существовала и в Китае. Чтобы записать число 934 в столбик единиц клали 4 палочки, десятков — 3, а сотен — 9 палочек. Вместо нуля оставляли пустое место. А вот записывая цифры китайцы разряды не использовал и символа для ноля не было.
У так популярных сейчас индейцев Майа тоже был свой ноль в их двадцатеричной системе счисления, на тысячу лет раньше индийцев. Но ноль у Майа означал не ноль в нашем понимании слова, а «начало». Счет дней в календаре майя начинался с нулевого дня и назывался «Ахау».
Соседи Инки использовали узелковое письмо, где цифры от 1 до 9 обозначались разными узелками, а ноль — пустым местом.
Изобретение числа ноль
Когда и как появился ноль в современном значении? Что же собственно изобрели индийские математики? Они записали ноль поначалу точкой, обозначая отсутствующее число, а потом и кружочком. Но главное, что они определили ноль не как понятие отсутствия числа, а как число!
Индийские пра-ноли
Около 500 года нашей эры была разработана позиционная система записи чисел, а запись, касающаяся использования нуля, датируется 876 годом. Вот и ответ (хотя и довольно сомнительный) на вопрос «когда появился 0». Тот самый, настоящий.
Индийские математики Брахмагупта, Махавира и Бхаскара писали, что если из одного числа вычесть его же, то получится «ноль». Это и есть знакомое нам определения числа ноль. Теперь ноль — это число. Ноль используется в расчетах и даже записывается как маленький кружочек.
Всего 10 цифрами можно записать любое даже самое большое число. Это была революция в математике.
Индийцы называли ноль «сунья», пустой. Арабы перевели это как «сыфр», от которого произошло слово «цифры». Кстати, ноль, довольно загадочнон число, индийские же математики разделив на нуль получили бесконечность, а если ноль возвести в степень ноль, получися единица. Но это уже другие истории…