Самое большое число

Миллиард = биллион?

Такое слово, как биллион, применяется для обозначения миллиарда только в тех государствах, в которых за основу принята «короткая шкала». Это такие страны, как Российская Федерация, Соединенное Королевство Великобритании и Северной Ирландии, США, Канада, Греция и Турция. В других странах понятие биллион означает число 10 12 , то есть один и 12 нулей. В странах с «короткой шкалой», в том числе в России, эта цифра соответствует 1 триллиону.

Такая неразбериха появилась во Франции в то время, когда происходило становление такой науки, как алгебра. Изначально у миллиарда было 12 нулей. Однако все изменилось после появления основного пособия по арифметике (автор Траншан) в 1558 году), где миллиард — это уже число с 9 нулями (тысяча миллионов).

Несколько последующих столетий эти два понятия употреблялись наравне друг с другом. В середине 20 века, а именно в 1948 году, Франция перешла на длинную шкалу системы числовых наименований. В связи с этим, короткая шкала, некогда позаимствованная у французов, все же отличается от той, которой они пользуются сегодня.

Исторически сложилось так, что Соединенное Королевство использовало долгосрочный миллиард, но с 1974 года официальная статистика Великобритании использовала краткосрочную шкалу. С 1950-х годов краткосрочная шкала все чаще использовалась в области технической письменности и журналистики, несмотря на то, что по-прежнему сохранялась долгосрочная шкала.

Бесчисленное множество различных чисел окружает нас каждый день. Наверняка многие люди хотя бы раз интересовались, какое число считается самым большим. Ребенку можно просто сказать, что это – миллион, но взрослые прекрасно понимают, что за миллионом следуют и другие числа. Например, стоит только каждый раз прибавлять к числу единичку, и оно будет становиться все больше – так происходит до бесконечности. Но если разобрать числа, имеющие названия, то можно узнать, как называется самое большое число в мире.

Количество цифр в числе Пи (до сих пор) // 13,300,000,000,000

Хотя Пи является иррациональным числом с бесконечными десятичными цифрами, наше знание этого числа имеет предел.

Компьютерные программы могут подсчитать значение Пи с большой точностью. В большинстве случаев достаточно округлить Пи до 3,14159.

Но многие ученые решили принять вызов и открыть больше цифр числа Пи. В 2011 году японский исследователь Сигэру Кондо (Shigeru Kondo) на личном компьютере с помощью программы Александра Йи (Alexander Yee) рассчитал значение числа Пи с точностью до 10 триллионов цифр после запятой.

Программа Йи также была использована, чтобы установить нынешний мировой рекорд — 13,3 триллиона цифр числа Пи. Чтобы вычислить это число, потребовалось 208 дней.

Один Гугол (Googol)

Часто используемое название популярной поисковой системы произносится почти также, как и слово googol (гугол). Это число имеет очень интересную историю, и вы без труда найдете её в интернете, если погуглите. Этот термин был впервые употреблен 9-летним Милтоном Сироттой (Milton Sirotta) в 1938 году. Это относительно абстрактное и формально существующее число, которому нашлось применение в определённых областях.

«Человек-Калькулятор» Алексис Лемар (Alexis Lemaire) установил мировой рекорд, вычислив корень 13-й степени из 100-значного числа. Для сравнения: корень 13-й степени из числа 8,192 равняется 2. Стозначное число – это гугол. Одно из чисел, которые Лемар вычислял, произносилось следующим образом – 3 гугола 893 дуотригинтиллиона (3 googol, 893 duotrigintillion)…и так далее. Еще одна область применения данного числа — это обозначение промежутка времени, примерно от 1 до 1.5 гугола лет, которые пройдут со времени большого взрыва, до взрыва самой массивной черной дыры. Это будет последним стабильным состоянием Вселенной перед распадом, и когда это случится, Вселенная войдет в пятую и последнюю эру своего существования, известную как Эра Темноты. Физический конец существования Вселенной основан на нескольких научных моделях.

Какое самое большое число в мире

В 1980 году в Книгу рекордов Гиннеса вошло число Грэма (оно же G64 или G), названное в честь американского математика Рональда Грэма

Оно является наибольшим числом, которое когда-либо использовалось в важном математическом доказательстве. Речь идет про теорию Франка Рамсея. Кратко об этой теории: представим себе N-мерный куб, его вершины в случайном порядке соединены красными или синими отрезками-линиями

А наша задача — понять, до какого значения N возможно (если по-разному закрашивать ребра куба), избежать ситуации, при которой одна плоскость в кубе будет окрашена одним цветом. То есть у нас не должен получиться одноцветный «конвертик»

Кратко об этой теории: представим себе N-мерный куб, его вершины в случайном порядке соединены красными или синими отрезками-линиями. А наша задача — понять, до какого значения N возможно (если по-разному закрашивать ребра куба), избежать ситуации, при которой одна плоскость в кубе будет окрашена одним цветом. То есть у нас не должен получиться одноцветный «конвертик».

Математики позакрашивали кубик и так и эдак, получилось, что до шестимерного куба можно исхитриться и сделать, чтобы линии одного цвета, соединяющие четыре вершины, не лежали в одной плоскости. А вот с семимерным, как выяснили Грэм и Ротшильд, такой фокус уже не провернешь. И с восьмимерным. И… «и так далее», которое, впрочем, не бесконечно, а заканчивается фантастически гигантским числом. Вот его-то и именуют числом Грэма. Кстати, в настоящее время решение Грэма и Ротшильда устарело. Математики выяснили, что 6-7-8-9-10-11-12-мерные кубы все же можно покрасить без «конвертов». Но где-то в промежутке между 13 и числом Грэма гарантированно есть число выше которого «конверты» в любом случае будут.

Число Грэма получило всемирное признание в 1977 году, когда известный популяризатор науки Мартин Гарднер написал об этом в Scientific American.

И хотя с тех пор в математической науке были и другие кандидаты на титул самого большого числа, «детище» Грэма является самым распиаренным и общеизвестным. И если вы слышали про «гугольное семейство»:

  • гугол — 10100;
    Или: 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
  • гуголплекс — 10гугол,

то знайте, что этими числами в математике лишь «разминаются», а число Грэма в немыслимое количество раз больше, чем они. И даже больше, чем число Скьюза, находящееся между 1019 и 1,3971672·10316 и приблизительно равное e727,951336108.

Любопытно, что придумав гугол американский математик Эдвард Казнер хотел показать студентам разницу между невероятно большим числом и бесконечностью. Тогда число Грэма может просто «взорвать мозг».

∞. Бесконечность

Это число известно всем и каждому, оно часто используется для преувеличений — как какой-нибудь «многоллион». Однако это число намного сложнее, чем большинство может представить, и если вы могли представить числа, идущие до этого пункта, именно это число очень странное и противоречивое. Согласно правилам бесконечности, есть бесконечное число нечетных и четных чисел в бесконечности, однако только половина от всех чисел может быть четной. Бесконечность плюс один равна бесконечности, бесконечность минус один равна бесконечности, бесконечность плюс бесконечность равна бесконечности, деленная пополам — тоже бесконечность, бесконечность минус бесконечность — никто не знает, бесконечность, деленная на бесконечность, будет, скорее всего, 1.

Ученые полагают, что в известной вселенной около 10^80 субатомных частиц, но это только известная вселенная. Некоторые предполагают, что вселенная бесконечна. Если это так, то математически достоверно, что есть другая Земля где-то там, где каждый атом складывается таким же образом, как и мы, и наша Земля. Шанс того, что копия Земли существует, невероятно мал, но в бесконечной вселенной это не только может произойти, но и бесконечно много раз.

В бесконечность верят не все. Израильский профессор математики Дорон Зильбергер утверждает, что по его мнению, числа не будут продолжаться вечно, и найдется настолько большое число, что когда вы добавите к нему единицу, вы придете к нулю

И хотя это число едва ли когда будет обнаружено и едва ли кто сможет его вообразить, бесконечность является важной частью математической философии

ТОП-10 самых больших известных чисел

Как показывает практика, предельного понятия исчисления нет. Когда дети задают вопрос о том, какое самое большое число, ответить можно только в рамках абстрактного понятия.

Чтобы разобраться в этом вопросе и улучшить кругозор, можно изучить ТОП-10 самых больших известных чисел, которые известны человечеству на сегодняшний день.

10^80

Известно как 10 с 80 нулями. В Америке и на территории Англии называют — квинквавигинтиллион. Казалось бы, что может быть больше, ведь это число может охарактеризовать количество частиц во вселенной.

Однако 10 в 80-ой степени далеко не самое большое значение, которое на сегодняшний день известно ученым.

Гугол

Интересный факт, всеми известная поисковая система подарила этому числу большую популярность. Однако значение известно лишь истинным фанатам. Говоря о том, сколько это на самом деле можно выделить число со 100-та нулями.

8,5 х 10^185

С одной стороны это значение обозначает самую маленькую характеристику длины, а с другой это одно из самых больших чисел. В науке обозначается как Длина Планка.

В отличие от других значений имеет распространение в квантовой физике и стала частью теории струн. Говоря о том, сколько же это число значит, можно выделить — 0,00000000000000000000000000000616199 метра.

2^43,112,609 – 1

Интересный факт — в этом числе практически 18 миллионов цифр. Обнаружили сравнительно недавно, т.е в 2008 году в ходе GIMPS.

Несмотря на свою величину, занимает лишь 47 место в порядке размера.

Гуголплекс

Впервые те, кто не сталкивался плотно с наукой, могли услышать это значение в фильме «Назад Будущее». Во время одного из мозговых штурмов Эммет Браун обронил слово Гуголплекс.

Числа Скьюза

Достаточно много теорий по поводу величины этого значений. Однако если взять за основу самую популярную, то окажется, что Скьюз больше чем гуголплекс в несколько раз. Джон Литтлвуд в далеком 1914 году делал первые открытия, которые доказывали существование этого числа.

Однако доказать значение получилось только у Стенли Скьюза в 1933, после того, как он взял в основу теорию Римана.

Теория Пуанкаре

Число и одновременно теория о том, сколько бы времени понадобилось бы нашей Вселенной, что вернуться в исходное состояние.

Говоря простым языком, 10^10^10^10^10^1,1 лет нужно для того, чтобы история человечества вновь повторилась.

Значение Грэма

Одно из самых больших чисел, которое стало известно лишь в конце 80-х. Для его простой записи используют метод Кнута. Запомнить написание практически невозможно. Чтобы оценить масштабность значения, можно представить как число Пуанкаре умножают на несколько раз.

Бесконечность

С научной точки зрения число имеет огромную величину. Она настолько большая, что порой человеческой возможности абстракции не хватает фантазии чтобы ее представить.

Интересный факт, бесконечность ровно на половину делится на четные и нечетные числа. Ученые сами до конца не выяснили до конца какую величину обозначает мера «бесконечность». Ведь сегодня известно лишь 10^80 частиц.

Однако в такую теорию верят далеко не все ученые, например Дорон Зильбергер из Израиля настаивает на то, что вскоре найдется число больше бесконечности.

Когда это произойдет не уточняется, ведь предельное число бесконечности лишь абстрактное понимание. Тем не менее на сегодняшний день именно о бесконечности говорят в школах, и именно это значение является верховным в математической философии.

∞ + 1

Несмотря на абстрактность теории о бесконечности, есть идея, что это не конечное число. Как показывает практика, у каждого числа есть своя принадлежность, т.е к плюсу или минусу.

Если из суммы натуральных чисел вычесть сумму их квадрата — можно получить — ∞. Это значит, что границы бесконечности не могут заканчиваться только на одной теории о конечном числе. Чтобы углубиться в этот вопрос можно изучить метод Лопиталя.

Способы фиксации теоретических сверхвеличин

Для невероятно больших чисел количество степеней так велико, что пользоваться этим значением неудобно. Несколькими математиками были разработаны разные системы для отображения таких чисел.

Нотация Кнута с использованием системы символов–стрелок, обозначающих сверхстепень, состоящей из 64 уровней.

Нотация Грэма – это своего доработка системы Кнута. Для обозначения количества стрелок используются числа G с порядковыми номерами:

И так до G63. Именно оно считается числом Грэма и записывается часто без порядкового номера.

Нотация Стейнхауза – для обозначения степени степеней используются геометрические фигуры, в которые вписывается то или иное число. Стейнхауз выбрал основные – треугольник, квадрат и круг.

Число n в треугольнике обозначает число в степени этого числа, в квадрате – число в степени, равной числу в n треугольниках, вписанное в круг – в степени, тождественной степени числа, вписанного в квадрат.

Лео Мозер, придумавший такие числа-гиганты, как мега и мегистон, усовершенствовал систему Стейнхауза, введя дополнительные многоугольники и придумав способ записи, их обозначающий, – с использованием квадратных скобок. Ему также принадлежит наименование мегагон, относящееся к многоугольной геометрической фигуре с мегачислом сторон.

Одним из самых больших чисел в математике, названным в честь Мозера, считается 2 в мегагоне = 2].

Процесс поиска самых больших чисел

Конечно же, простому обывателю интересно, каким образом, ученым удается делать подобные открытия? Нужно сказать, что все необходимые для этого расчеты проводят компьютеры. Купер, к примеру, воспользовался методом распределенных вычислений. Методика вычисления заключается в том, что все необходимые расчеты проводят установленные на персональных компьютеров добровольцев программы.

При проведении расчетов, определялись 14 чисел Мерсенна. Свое название такие числа получили в честь математика из Франции, который многие годы занимался вычислением максимально большого числа. Особенностью этих чисел является то, что они могут делиться исключительно на себя самих или же на единицу. Для их расчета, ученые используют формулу Мn=2n-1. В данной формуле n является натуральным числом.

Не менее распространенный вопрос – для чего это вообще нужно математикам? Ведь такие числа вряд ли где-то можно использовать. Здесь все достаточно банально – каждый ученый хотел бы стать первооткрывателем. К тому же, никто не отменял азарта. Ну и, конечно же, материальное стимулирование. Так, Купер за свое открытие получил премию в 3 тысячи долларов. Стимулом также стало обещание Фонда Электронных Рубежей наградить того, кто сможет рассчитать простые числа, которые будут состоять из ста миллионов и 1 миллиарда простых чисел. При этом денежный приз будет в размере 150 и 250 тысяч американских долларов соответственно.

Безопасность простых чисел

Одно из самых распространенных применений простых чисел — система шифрования RSA. В 1978 году Рональд Ривести, Ади Шамир и Леонард Адлеман взяли за основу простейшие известные факты о числах и создали RSA. Разработанная ими система позволяла передавать информацию в зашифрованном виде — вроде номера кредитной карточке — и через Интернет.

Первым ингредиентом алгоритма стали два больших простых числа. Чем больше эти числа, тем безопаснее шифрование. Числа, которые используются для счета, один, два, три, четыре и так далее — известные также как натуральные числа — также чрезвычайно полезны для этого процесса. Но простые числа лежат в основе всех натуральных чисел и поэтому более важны.

Возьмем, к примеру, число 70. Оно делится на 2 и 35. Далее, 35 — произведение 5 и 7. 70 — это произведение трех меньших чисел: 2, 5 и 7. На этом все, потому что они уже не разбиваются. Мы нашли первичные компоненты, составляющие 70, осуществили его факторизацию.

Перемножение двух чисел, даже очень больших, — это утомительная, но простая задача. Факторизация же целого числа, с другой стороны, — это сложно, поэтому система RSA использует это преимущество.

Допустим, Алиса и Боб хотят секретно пообщаться в Интернете. Им нужна система шифрования. Если они сначала встретятся лично, они могут оговорить метод шифрования и дешифрования, который будет известен только им, но если же первый разговор состоится в онлайне, им придется сперва открыто обсудить систему шифрования — а это риск.

Однако если Алиса выберет два больших числа, рассчитает их произведение и сообщит об этом открыто, определить первоначальные простые числа будет очень сложно, потому что только она знает факторы.

Поэтому Алиса сообщает свое произведение Бобу, сохраняя в тайне факторы. Боб использует произведение для шифрования своего послания Алисе, которое можно расшифровать только при помощи известных ей факторов. Если Ева захочет подслушать, она никогда не сможет расшифровать сообщение Боба, если не заполучит факторы Алисы, а Алиса, конечно, будет против. Если Ева попытается разложить произведение — даже при помощи самого быстрого суперкомпьютера — у нее это не получится. Просто не существует такого алгоритма, который справился бы с этой задачей за время жизни Вселенной.

Самое большое число

Из школьного курса известно, что наибольшего числа не существует. Ведь если к самому большому числу прибавить хотя бы единицу, то получим еще большее число. Школьник с легкостью скажет, что, например, самое большое двузначное число — 99, а трехзначное — 999 и т.д.

Существует два алгоритма наименования чисел – английский и американский.

В американском названия больших чисел строятся следующим образом: сначала идет латинское порядковое числительное, а затем добавляется суффикс «иллион». Исключение – миллион. Далее получаются числа: триллион, квадриллион, квинтиллион. После идут секстиллион, септиллион, октиллион, нониллион и дециллион. Такой способ используют в США, Канаде, России и Франции.

Американский алгоритм наименования чисел

Английский алгоритм используют в Испании и Великобритании, а так же в ряде бывших колоний.

Здесь названия строятся так: к латинскому числительному прибавляют суффикс «иллион», к следующему числу (которое больше в 1000 раз) уже добавляют суффикс «иллиард».

После триллиона идет триллиард, после квадриллион, квадриллиард и т.д. Получается, что по английскому и американскому алгоритму одни и те же большие числа называются по-разному.

Читайте по теме: Самое маленькое число

В русский язык из английской системы пришел только миллиард (109), который американцы называют биллионом. Иногда в России употребляют слово триллиард, т.е. 1000 триллионов или квадриллион.

Самое большое простое число в мире – 274207281 – 1, которое содержит 22 338 618 десятичных цифр (простое число Мерсенна). Значение нашли в 2015 году в ходе проекта по распределенному поиску простых чисел Мерсенна GIMPS.

Поясним, что простыми называются натуральные (целые положительные) числа, имеющие только два делителя — единицу и само себя. Например, 2, 3, 5, 7 — простые числа. Список продолжают 11, 13, 17, 19… Кроме двойки все числа нечетные, иначе бы делились не только на единицу и себя, но и на два.

Значит, найденное простое число еще и самое большое из нечетных.

Маренн Марсен и самое большое простое число

По утверждению Евклида, простых чисел бесконечное множество, значит, наибольшего простого числа нет. Ученые до сих пор ищут числа-рекордсмены. И тому есть разумное объяснение. Всемирная организация Electronic Frontier Foundation учредила награды за подобные открытия: чем больше найденное число, тем выше награда.

Есть специальный способ проверки простоты чисел, который называется тест Люка-Лемера. Правда, предназначен он исключительно для чисел Мерсенна. Что же это за числа? Это вид натуральных чисел, расположенных в определенной последовательности. Имя им дал французский математик Мерсенн Марен. Вид числа Мерсенна такой:

Mn = 2n – 1,

где n — натуральное число.

При n = 1, 2, 3, 4, … числа Мерсенна образуют последовательность, начинающуюся с 1, 3, 7, 15. Затем идут 31, 63, 127. Продолжают ряд 255, 511, 1023, 2047 и т.д.

Такие числа используют в криптографии, например, для усовершенствования банковских кодов.

Внесистемные числа

Кроме чисел, которые записаны при помощи английской или американской систем, известны внесистемные числа. У них есть собственные названия, в которых нет латинских префиксов. Для понимания сначала рассмотрим запись латинскими числительными.

Единица – это 100, десять — 101 и так далее: миллиард — 109, триллион — 1012, квадриллион — 1015, квинтиллион — 1018, секстиллион — 1021, септиллион — 1024, октиллион — 1027, нониллион — 1030, дециллион — 1033.

С помощью приставок можно и дальше выводить числа: андециллион, дуодециллион, тридециллион и так далее. Но нужны собственные названия чисел, а тут только составные названия. Поэтому по этой системе собственных имен еще только три — вигинтиллион — 1063, центиллион — 10303, миллеиллион — 103003.

В миллеиллионе 3003 нуля

Число с собственным, а не составным названием больше 103003 получить невозможно. Однако числа больше миллеиллиона известны – это внесистемные числа.

Самое маленькое внесистемное число носит название мириада. Означает сотню сотен, т.е. 10000.

Внесистемные числа

Стоит сказать и о том, что, помимо системных, существуют также и внесистемные числа. Может, среди них затерялось самое большое число? Стоит в этом разобраться.

  1. Гугол. Это число десять в сотой степени, т. е. единица, за которой следует сто нулей (10100). О данном числе впервые было сказано в далеком 1938 году ученым Эдвардом Каснером. Весьма интересный факт: всемирная поисковая система «Гугл» названа в честь довольно-таки большого на то время числа – гугол. А название ему придумал малолетний племянник Каснера.
  2. Асанкхейя. Это весьма интересное название, которое с санскрита переводится как «неисчислимый». Числовое значение ее – единица со 140 нулями – 10140. Интересным окажется следующий факт: это было известно людям еще в 100 году до н. э., о чем говорит запись в Джайна-сутре, известном буддийском трактате. Данное число считалось особенным, ведь было мнение, что столько же нужно космических циклов, чтобы достичь нирваны. Также на то время это число считалось самым большим.
  3. Гуголплекс. Это число придумано все тем же Эдвардом Каснером и его вышеупомянутым племянником. Числовое его обозначение – десять в десятой степени, которая, в свою очередь, состоит в сотой степени (т. е. десять в степени гуголплекс). Также ученый сказал, что таким образом можно получить настолько большое число, насколько хочется: гуголтетраплекс, гуголгексаплекс, гуголоктаплекс, гуголдекаплекс и т. д.
  4. Число Грэма – G. Это самое большое число, признано таковым в недалеком 1980 году Книгой рекордов Гиннеса. Оно существенно больше, нежели гуголплекс и его производные. А ученые и вовсе говорили о том, что вся Вселенная не в состоянии в себя вместить всю десятичную запись числа Грэма.
  5. Число Мозера, число Скьюза. Эти числа также считаются одними из самых больших и применяются они чаще всего при решении различных гипотез и теорем. А так как эти числа невозможно записать общепринятыми всеми законами, каждый ученый делает это по-своему.

Таблица названий больших чисел, разрядов и классов

1-й класс единицы 1-й разряд единицы 2-й разряд десятки 3-й разряд сотни 1 = 10 0
10 = 10 1
100 = 10 2
2-й класс тысячи 1-й разряд единицы тысяч 2-й разряд десятки тысяч 3-й разряд сотни тысяч 1 000 = 10 3 10 000 = 10 4
100 000 = 10 5
3-й класс миллионы 1-й разряд единицы миллионов 2-й разряд десятки миллионов 3-й разряд сотни миллионов 1 000 000 = 10 6 10 000 000 = 10 7 100 000 000 = 10 8
4-й класс миллиарды 1-й разряд единицы миллиардов 2-й разряд десятки миллиардов 3-й разряд сотни миллиардов 1 000 000 000 = 10 9 10 000 000 000 = 10 10 100 000 000 000 = 10 11
5-й класс триллионы 1-й разряд единицы триллионов 2-й разряд десятки триллионов 3-й разряд сотни триллионов 1 000 000 000 000 = 10 12 10 000 000 000 000 = 10 13 100 000 000 000 000 = 10 14
6-й класс квадриллионы 1-й разряд единицы квадриллионов
2-й разряд десятки квадриллионов
3-й разряд десятки квадриллионов
1 000 000 000 000 000 = 10 15 10 000 000 000 000 000 = 10 16 100 000 000 000 000 000 = 10 17
7-й класс квинтиллионы 1-й разряд единицы
квинтиллионов
2-й разряд десятки
квинтиллионов
3-й разряд сотни
квинтиллионов
1 000 000 000 000 000 000 = 10 18 10 000 000 000 000 000 000 = 10 19 100 000 000 000 000 000 000 = 10 20
8-й класс секстиллионы 1-й разряд единицы секстиллионов 2-й разряд десятки секстиллионов 3-й разряд сотни секстиллионов 1 000 000 000 000 000 000 000 = 10 21 10 000 000 000 000 000 000 000 = 10 22 1 00 000 000 000 000 000 000 000 = 10 23
9-й класс септиллионы 1-й разряд единицы септиллионов 2-й разряд десятки септиллионов 3-й разряд сотни септиллионов 1 000 000 000 000 000 000 000 000 = 10 24 10 000 000 000 000 000 000 000 000 = 10 25 100 000 000 000 000 000 000 000 000 = 10 26
10-й класс октиллион 1-й разряд единицы октиллионов 2-й разряд десятки октиллионов 3-й разряд сотни октиллионов 1 000 000 000 000 000 000 000 000 000 = 10 27 10 000 000 000 000 000 000 000 000 000 = 10 28 100 000 000 000 000 000 000 000 000 000 = 10 29

Для удобства чтения и запоминания больших чисел цифры их разбивают на так называемые «классы»: справа
отделяют три цифры (первый класс), затем еще три (второй класс) и т.д. Последний класс может иметь три, две и одну цифру. Между классами обычно оставляется небольшой пробел. Например, число 35461298
записывают так 35 461 298
. Здесь 298
— первый класс, 461
— второй класс, 35
— третий. Каждая из цифр класса называется его разрядом; счет разрядов также идет справа. Например, в первом классе 298
цифра 8
составляет первый разряд, 9
— второй, 2
— третий. В последнем классе может быть три, два разряда (в нашем примере: 5
— первый разряд, 3
— второй) или один.

Первый класс дает число единиц, второй — тысяч, третий — миллионов; сообразно с этим число 35 461 298
читается: тридцать пять миллионов четыреста шестьдесят одна тысяча двести девяносто восемь
. Поэтому говорят, что единица второго класса есть тысяча; единица третьего класса — миллион.

Использование названий больших чисел

Некоторые имена с большими числами, такие как миллион , миллиард и триллион , имеют реальные ссылки в человеческом опыте и встречаются во многих контекстах. Иногда названия больших чисел были вынуждены широко использоваться в результате гиперинфляции . Банкнота с наивысшей числовой стоимостью, когда-либо напечатанная, была купюрой в 1 секстиллион пенго (10 21 или 1 миллиард билпенго в печатном виде), напечатанной в Венгрии в 1946 году. В 2009 году Зимбабве напечатала зимбабвийскую купюру в 100 триллионов (10 14 ) долларов , которая в то время печати стоило около 30 долларов США.

Однако имена больших чисел имеют незначительное, искусственное существование, редко встречаются вне определений, списков и обсуждений способов именования больших чисел. Даже хорошо зарекомендовавшие себя названия, такие как секстиллион , используются редко, поскольку в контексте науки, включая астрономию, где часто встречаются такие большие числа, они почти всегда записываются с использованием научных обозначений . В этих обозначениях степени десяти выражаются как 10 с числовым надстрочным индексом, например: «Рентгеновское излучение радиогалактики равно1,3 × 10 45  джоулей » . Когда такое число, как 10 45, нужно передать словами, оно просто читается как« от десяти до сорок пятого ». Это легче сказать и менее двусмысленно, чем« quattuordecillion », что означает нечто иное в длинном и коротком масштабе.

Когда число представляет собой количество, а не количество, можно использовать префиксы SI — таким образом, «фемтосекунду», а не «одну квадриллионную долю секунды» — хотя часто вместо некоторых очень высоких и очень низких префиксов используются степени десяти. В некоторых случаях используются специализированные единицы, такие как парсек астронома и световой год или сарай физика элементарных частиц .

Тем не менее, большие числа обладают интеллектуальным увлечением и представляют математический интерес, и присвоение им имен — один из способов, с помощью которых люди пытаются осмыслить и понять их.

Одним из самых ранних примеров этого является «Счетчик песка» , в котором Архимед дал систему именования больших чисел. Для этого он называл числа до бесчисленного множества (10 8 ) «первыми числами» и называл 10 8 «единицей вторых чисел». Кратные этой единицы затем стали вторыми числами, до этой единицы взято мириады раз, 10 8 · 10 8 = 10 16 . Это стало «единицей третьих чисел», кратными третьим числам и так далее. Архимед продолжал называть числа таким образом до бесчисленного множества раз больше единицы из 10 8-го числа, то есть и встроил эту конструкцию в другую копию самого себя, чтобы получить имена для чисел вплоть до Архимеда, а затем оценил количество песчинок, которые потребовалось, чтобы заполнить известную вселенную, и обнаружил, что это не более «тысячи мириад восьмых чисел» (10 63 ).
(108)(108)знак равно108⋅108,{\ displaystyle (10 ^ {8}) ^ {(10 ^ {8})} = 10 ^ {8 \ cdot 10 ^ {8}},}((108)(108))(108)знак равно108⋅1016.{\ displaystyle ((10 ^ {8}) ^ {(10 ^ {8})}) ^ {(10 ^ {8})} = 10 ^ {8 \ cdot 10 ^ {16}}.}

С тех пор многие другие занимались концептуализацией и именованием чисел, которые на самом деле не существуют вне воображения. Одна из причин для такого поиска — это то, что приписывают изобретателю слова гугол , который был уверен, что любое конечное число «должно иметь имя». Другая возможная мотивация — это соревнование между студентами курсов компьютерного программирования, где обычным упражнением является написание программы для вывода чисел в форме английских слов.

Большинство названий, предлагаемых для больших чисел, относятся к систематическим схемам, которые можно расширять. Таким образом, многие имена для больших чисел являются просто результатом следования системе именования до ее логического завершения или дальнейшего ее расширения.