Что вы увидите, падая в черную дыру?

Вопрос о сохранении информации

Одной из основных проблем, которая появилась после открытия излучения Хокинга, является проблема потери информации. Связана она с вопросом, кажущимся на первый взгляд очень простым: что произойдет, когда черная дыра испарится полностью? Обе теории – как квантовая физика, так и классическая – имеют дело с описанием состояния системы. Обладая информацией о начальном состоянии системы, при помощи теории можно описать, каким образом она будет меняться.

При этом в процессе эволюции информация о начальном состоянии не теряется – действует своего рода закон о сохранении информации. Но если черная дыра испарится полностью, то наблюдатель теряет информацию о той части физического мира, который когда-то попал в дыру. Стивен Хокинг считал, что информация о начальном состоянии системы каким-то образом восстанавливается после того, как черная дыра испарилась полностью. Но трудность состоит в том, что по определению из черной дыры передача информации невозможна – ничто не может покинуть горизонт событий.

Что внутри черной дыры: догадки

Некоторые из математиков считают, что внутри этих загадочных объектов Вселенной находятся так называемые червоточины — переходы в другие Вселенные. Иными словами, в точке сингулярности расположен пространственно-временной туннель. Эта концепция послужила источником вдохновения для многих писателей и режиссеров. Однако подавляющее большинство астрономов считают, что никаких туннелей между Вселенными не существует. Однако даже если бы они действительно были, у человека нет никаких способов узнать, что находится внутри черной дыры.

Существует и другая концепция, согласно которой в противоположном конце такого туннеля находится белая дыра, откуда из нашей Вселенной в другой мир через черные дыры поступает гигантское количество энергии. Однако на данном этапе развития науки и техники о путешествиях подобного рода не может быть и речи.

Бинарные чёрные дыры

В 2015 году астрономы с помощью лазерного интерферометра гравитационно-волновой обсерватории (LIGO) обнаружили гравитационные волны от слияния звездных черных дыр.

«У нас есть еще одно подтверждение существования черных дыр звездной массы, которые больше, чем 20 солнечных масс — это объекты, о существовании которых мы не знали до того, как LIGO обнаружило их», — сказал Дэвид Шумейкер, представитель LIGO Scientific Collaboration (LSC). Наблюдения ЛИГО также дают представление о том, в каком направлении вращается черная дыра. Поскольку две черные дыры вращаются по спирали вокруг друг друга, они могут вращаться в одном и том же направлении или в противоположном направлении.

Существует две теории о том, как формируются бинарные черные дыры: 

  1. Первая предполагает, что две черные дыры в двоичной форме возникли примерно в одно и то же время, из двух звезд, которые родились вместе и умерли (взорвались) примерно в одно и то же время. Звезды-компаньоны имели бы такую же ориентацию спина, как и друг у друга, поэтому две черные дыры, также будут иметь такую же ориентацию.
  2. Согласно второй модели, черные дыры в звездном скоплении опускаются к центру скопления и образуют пару. Эти компаньоны будут иметь случайные спиновые ориентации по сравнению друг с другом. Наблюдения ЛИГО за черными дырами-компаньонами с различной ориентацией спинов дают более веские доказательства этой теории образования.

«Мы начинаем собирать реальную статистику по бинарным системам черных дыр», — сказал ученый LIGO Кейта Кавабе из Caltech, который базируется в обсерватории LIGO Hanford. «Это интересно, потому что некоторые модели бинарного образования черных дыр несколько предпочтительнее других даже сейчас, и в будущем мы можем еще больше сузить этот вопрос.»

Как выглядят черные дыры

Черные дыры имеют три «слоя»: внешний и внутренний горизонт событий, а также сингулярность.

Горизонт Событий черной дыры — это граница вокруг устья черной дыры, за которую не может проникнуть свет. Как только частица пересекает горизонт событий, она не может вырваться обратно. Гравитация постоянна по всему горизонту событий.

Внутренняя область черной дыры, где находится масса объекта, известна как его сингулярность, — это точка в пространстве и времени, где сосредоточена масса черной дыры.

Ученые не могут видеть черные дыры так, как они могут видеть звезды и другие объекты в космосе. Вместо этого астрономы должны полагаться на обнаружение излучения, которое испускают черные дыры, когда пыль и газ втягиваются внутрь. Но сверхмассивные черные дыры, лежащие в центре галактики, могут быть окутаны густой пылью и газом вокруг них, что может блокировать излучение.

Иногда, когда материя притягивается к черной дыре, она рикошетит от горизонта событий и выбрасывается наружу, вместо того чтобы быть втянутой внутрь. Создаются яркие струи, движущиеся с почти релятивистскими скоростями. Хотя черная дыра остается невидимой, эти мощные струи можно наблюдать с больших расстояний.

Изображение черной дыры на телескопе Event Horizon в M87 (выпущенном в 2019 году) было экстраординарным усилием, потребовавшим двух лет исследований даже после того, как снимки были сделаны. Это происходит потому, что совместная работа телескопов, которая охватывает многие обсерватории по всему миру, производит поразительное количество данных, которые слишком велики для передачи через интернет.

Со временем исследователи ожидают получить изображение других черных дыр и построить хранилище того, как выглядят эти объекты. Следующая цель, вероятно, Стрелец А*, который является черной дырой в центре нашей собственной галактики Млечный Путь. Стрелец A* интригует, потому что он тише, чем ожидалось, что может быть связано с магнитными полями, подавляющими его активность. Другое исследование показало, что Стрельца А* окружает холодное газовое гало, что дает беспрецедентное понимание того, как выглядит окружающая среда вокруг черной дыры.

Границы черных дыр

Первая из границ черной дыры называется пределом статичности. Это граница области, попадая в которую посторонний объект уже не может находиться в состоянии покоя и начинает вращаться относительно черной дыры, чтобы удержаться от падения в нее. Вторая граница зовется горизонтом событий. Все, что внутри черной дыры, когда-то проходило ее внешнюю границу и двигалось по направлению к точке сингулярности. По мнению ученых, здесь вещество вливается в эту центральную точку, плотность которой стремится к значению бесконечности. Люди не могут знать, какие законы физики действуют внутри объектов с такой плотностью, и поэтому описать характеристики этого места невозможно. В буквальном смысле слова оно является «черной дырой» (или, быть может, «пробелом») в знаниях человечества об окружающем мире.

Связь с теорией относительности

Черные дыры являются одним из самых удивительных предсказаний А. Эйнштейна. Известно, что сила тяготения, которая создается на поверхности любой планеты, обратно пропорциональна квадрату ее радиуса и прямо пропорциональна ее массе. Для этого небесного тела можно определить понятие второй космической скорости, которая необходима, чтобы преодолеть эту силу тяготения. Для Земли она равна 11 км/сек. Если же масса небесного тела будет увеличиваться, а диаметр – наоборот, уменьшаться, то вторая космическая скорость со временем может превысить скорость света. И поскольку, согласно теории относительности, никакой объект не может двигаться быстрее скорости света, то образуется объект, не дающий ничему вырваться за его пределы.

В 1963 году учеными были обнаружены квазары – космические объекты, являющиеся гигантскими источниками радиоизлучения. Располагаются они очень далеко от нашей галактики – их удаленность составляет миллиарды световых лет от Земли. Чтобы объяснить чрезвычайно высокую активность квазаров, ученые ввели гипотезу о том, что внутри них располагаются черные дыры. Эта точка зрения сейчас является общепринятой в научных кругах. Исследования, которые проводились в течение последних 50 лет, не только подтвердили данную гипотезу, но и привели ученых к выводу о том, что черные дыры есть в центре каждой галактики. В центре нашей галактики также есть такой объект, его масса составляет 4 миллиона солнечных масс. Эта черная дыра носит название «Стрелец А», и поскольку она расположена ближе всего к нам, ее больше всего исследуют астрономы.

Типы Чёрных дыр

До сих пор астрономы выделяли три типа черных дыр: звездные черные дыры, сверхмассивные черные дыры и промежуточные черные дыры.

Звездные чёрные дыры

Когда звезда сжигает остатки своего топлива она может сжаться. Для более мелких звезд (которые примерно в три раза превышают массу Солнца) новое ядро станет нейтронной звездой или белым карликом. Но когда большая звезда коллапсирует, она продолжает сжиматься и создает звездную черную дыру .

Черные дыры, образованные коллапсом отдельных звезд, относительно невелики, но имеют очень большую плотность. Один из таких объектов содержит более чем в три раза больше массы Солнца. Это приводит к сумасшедшему количеству гравитационной силы, притягивающей объекты вокруг чёрной дыры. Затем звездные черные дыры поглощают пыль и газ из окружающих их галактик, что позволяет им расти в размерах.

Согласно данным Гарвард-Смитсоновского центра астрофизики, — Млечный Путь содержит несколько сотен миллионов звездных черных дыр.

Сверхмассивные черные дыры

Маленькие черные дыры населяют бесконечную вселенную, но их родственники, — сверхмассивные черные дыры, — доминируют над ними. Эти огромные черные дыры в миллионы или даже миллиарды раз массивнее Солнца, но примерно одинакового размера в диаметре. Считается, что такие черные дыры лежат в центре почти каждой галактики, включая Млечный Путь.

Возникновение:

Ученые не уверены, как возникают такие большие черные дыры. Как только эти гиганты сформировались, они собирают массу из пыли и газа вокруг себя, материала, который в изобилии находится в центре галактик, что позволяет им расти до еще более огромных размеров.

  • Сверхмассивные черные дыры могут быть результатом слияния сотен или тысяч крошечных черных дыр. 
  • Большие газовые облака также могут быть причастны к формированию сверхмассивной дыры, — схлопываясь вместе, они быстро наращивают массу. 
  • Третий вариант — это коллапс звездного скопления, когда все звезды падают вместе. 
  • В-четвертых, сверхмассивные черные дыры могут возникать из больших скоплений темной материи. Это вещество, которое мы можем наблюдать через его гравитационное воздействие на другие объекты; однако мы не знаем, из чего состоит темная материя, потому что она не испускает свет и не может быть непосредственно наблюдаема.

Промежуточные черные дыры

Ученые когда-то думали, что черные дыры бывают только малых и больших размеров, но недавние исследования показали возможность существования средних или промежуточных черных дыр (IMBHs). Такие тела могут образовываться, когда звезды в скоплении сталкиваются в цепной реакции. Некоторые из этих промежуточных черных дыр, образующихся в одной и той же области, могут затем в конечном итоге столкнуться в центре галактики и создать сверхмассивную черную дыру.

В 2014 году астрономы обнаружили нечто похожее на черную дыру средней массы в рукаве спиральной галактики.

Астрономы очень усердно искали эти черные дыры среднего размера, — говорится в заявлении соавтора исследования Тима Робертса из Университета Дарема в Великобритании. Были намеки, что они существуют, но IMBHs вели себя как давно потерянный родственник, который не заинтересован в том, чтобы его нашли.

Более новые исследования, начиная с 2018 года, предположили, что эти промежуточные черные дыры могут существовать в центре карликовых галактик (или очень маленьких галактик). Наблюдения 10 таких галактик (пять из которых были ранее неизвестны науке до этого последнего исследования) выявили рентгеновскую активность — обычную для черных дыр — предполагая наличие в них черных дыр с массой от 36 000 до 316 000 солнечных масс. Эта информация поступила от компании Sloan Digital Sky Survey, которая изучает около 1 миллиона галактик.

Строение черных дыр

Горизонтом событий называется неприступная граница черной дыры. Внутри этой границы находится зона, которую не могут покинуть даже объекты, скорость движения которых равна скорости света. Даже кванты самого света не могут покинуть горизонт событий. Находясь в этой точке, никакой предмет уже не может вырваться из черной дыры. О том, что внутри черной дыры, мы не можем узнать по определению – ведь в ее глубинах находится так называемая точка сингулярности, которая формируется за счет предельного сжатия вещества. Когда объект попадает внутрь горизонта событий, с этого момента он никогда не сможет вырваться снова из нее и стать видимым для наблюдателей. С другой стороны, те, кто находятся внутри черных дыр, не могут видеть ничего из происходящего снаружи.

Размер горизонта событий, окружающего этот загадочный космический объект, всегда прямо пропорционален массе самой дыры. Если ее масса будет удвоена, то вдвое больше станет и внешняя граница. Если бы ученые смогли найти способ, позволяющий превратить Землю в черную дыру, то размер горизонта событий составлял бы всего лишь 2 см в поперечном разрезе.

Что будет, если попадешь в черную дыру?

Считается, что если бы каким-либо невероятным способом человек мог попасть на поверхность черной дыры, то она сразу стала бы его затягивать в направлении себя. В конечном счете человек бы растянулся настолько, что превратился бы в поток субатомных частиц, движущихся по направлению к точке сингулярности. Доказать эту гипотезу, конечо же, невозможно, ведь ученые вряд ли когда-нибудь смогут узнать, что происходит внутри черных дыр. Сейчас некоторые физики заявляют, что если бы человек попал в черную дыру, то у него появился бы клон. Первая из его версий сразу же была бы уничтожена потоком раскаленных частиц излучения Хокинга, а вторая бы прошла через горизонт событий без возможности вернуться назад.

Могут ли две черные дыры столкнуться

Теоретически это возможно, о чем сказано на официальном сайте НАСА. При столкновении 2-х черных дыр происходит их слияние в единый объект, практически с теми же свойствами, получается сверхмассивная черная дыра.

При этом нужно понимать, что черная дыра это не космический пылесос, который всасывает в себя все что не попадя. Она, как и любой другой объект имеет собственную гравитацию, которая притягивает объекты в зоне досягаемости своей силы тяготения. Чтобы 2 черные дыры слились в одно целое, необходимо чтобы хотя бы 1 из них попала в зону действия гравитации другой. Вероятность такого события увеличивается в системах с двумя массивными звездами, которые переходят в следующую фазу. А также вблизи центра галактики, где, как правило, располагаются сверхмассивные черные дыры и имеется большое скопление звезд.

Теоретически, такое событие как слияние черных дыр во вселенной происходит периодически и в масштабах вселенной это мгновения, а по нашему, человеческому времени на это может уйти не одно десятилетие.

Основные категории

Как правило, масса среднестатистических черных дыр приблизительно равна трем солнечным массам и более. Из двух видов черных дыр выделяют звездные, а также сверхмассивные. Их масса превосходит массу Солнца в несколько сотен тысяч раз. Звездные образуются после смерти больших небесных светил. Черные дыры обычной массы появляются после завершения жизненного цикла больших звезд. Оба вида черных дыр, несмотря на различное происхождение, имеют сходные свойства. Сверхмассивные черные дыры расположены в центрах галактик. Ученые предполагают, что они сформировались во времена образования галактик за счет слияния плотно прилежащих друг к другу звезд. Однако это только догадки, не подтвержденные фактами.

Излучение Хокинга

Этот тип излучения, открытый известным физиком Стивеном Хокингом, значительно усложняет жизнь современным ученым – ведь из-за этого открытия в теории черных дыр появилось немало трудностей. В классической физике существует понятие вакуума. Этим словом обозначается полная пустота и отсутствие материи. Однако с развитием квантовой физики понятие вакуума было видоизменено. Ученые выяснили, что он заполнен так называемыми виртуальными частицами – под воздействием сильного поля они могут превратиться в реальные. В 1974 году Хокинг выяснил, что подобные превращения могут происходить в сильном гравитационном поле черной дыры – возле ее внешней границы, горизонта событий. Такое рождение является парным – появляется частица и античастица. Как правило, античастица обречена на падение в черную дыру, а частица улетает. В результате ученые наблюдают некоторое излучение вокруг этих космических объектов. Оно и получило название излучения Хокинга.

В ходе этого излучения то вещество, что внутри черной дыры, медленно испаряется. Дыра теряет массу, при этом интенсивность излучения обратно пропорциональна величине квадрата ее массы. Интенсивность излучения Хокинга ничтожно мала по космическим меркам. Если предположить, что существует дыра массой в 10 солнц, и на нее не попадает ни свет, ни какие-либо материальные объекты, то даже в этом случае время ее распада будет чудовищно велико. Жизнь такой дыры будет превосходить все время существования нашей Вселенной на 65 порядков.